{ "cells": [ { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "view-in-github" }, "source": [ "\"Open " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Linear models: a classic example" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "colab": {}, "colab_type": "code", "id": "oIimJROu2Hc_" }, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "from sklearn.linear_model import LinearRegression\n", "import matplotlib.pyplot as plt\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 201 }, "colab_type": "code", "id": "vsVJc6lS2Qov", "outputId": "fc0b2fe3-eccd-4f2a-819f-084bc8e2602d" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
RegionFertilityAgricultureExaminationEducationCatholicInfant.Mortality
0Courtelary80.217.015129.9622.2
1Delemont83.145.16984.8422.2
2Franches-Mnt92.539.75593.4020.2
3Moutier85.836.512733.7720.3
4Neuveville76.943.517155.1620.6
\n", "
" ], "text/plain": [ " Region Fertility Agriculture Examination Education Catholic \\\n", "0 Courtelary 80.2 17.0 15 12 9.96 \n", "1 Delemont 83.1 45.1 6 9 84.84 \n", "2 Franches-Mnt 92.5 39.7 5 5 93.40 \n", "3 Moutier 85.8 36.5 12 7 33.77 \n", "4 Neuveville 76.9 43.5 17 15 5.16 \n", "\n", " Infant.Mortality \n", "0 22.2 \n", "1 22.2 \n", "2 20.2 \n", "3 20.3 \n", "4 20.6 " ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dat = pd.read_csv(\"https://raw.githubusercontent.com/bcaffo/ds4bme_intro/master/data/swiss.csv\")\n", "dat.head()\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 54 }, "colab_type": "code", "id": "T34j2o8u2cH_", "outputId": "61309a3a-8ff6-489d-9dfd-c1ea40be99d8" }, "outputs": [ { "data": { "text/plain": [ "[66.9151816789687,\n", " array([-0.17211397, -0.25800824, -0.87094006, 0.10411533, 1.07704814])]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y = dat.Fertility\n", "x = dat.drop(['Region', 'Fertility'], axis=1)\n", "fit = LinearRegression().fit(x, y)\n", "yhat = fit.predict(x)\n", "[fit.intercept_, fit.coef_]\n" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "colab": {}, "colab_type": "code", "id": "Dwova9_d5BKe" }, "outputs": [], "source": [ "x2 = x\n", "x2['Test'] = x2.Agriculture + x2.Examination\n", "fit2 = LinearRegression().fit(x2, y)\n", "yhat2 = fit2.predict(x2)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 283 }, "colab_type": "code", "id": "RAIz1jJs6YFg", "outputId": "de9beb6e-d3e6-4033-eba9-27689bac6ff4" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxXElEQVR4nO3deXxU9b3/8fckgSGBJCjCTIIBEhpENkGpQECDZZFFf7Z4XQAtSr3FQisRZRMQZEmUVmoVL169XkUo6rUudUMSBKOIQAShGGWTsAkxRSETBRJIzu8P66nHmUAmy5xZXs/HYx4Pz2cm4cO3QN79fGZxGIZhCAAAIECi7G4AAABEFsIHAAAIKMIHAAAIKMIHAAAIKMIHAAAIKMIHAAAIKMIHAAAIKMIHAAAIqBi7G/ipqqoqHT58WPHx8XI4HHa3AwAAasAwDJWVlSk5OVlRUWefbQRd+Dh8+LBSUlLsbgMAANTCwYMHdeGFF571MUEXPuLj4yV933xCQoLN3QAAgJrweDxKSUkxf46fTdCFjx9WLQkJCYQPAABCTE2eMsETTgEAQEARPgAAQEARPgAAQEARPgAAQEARPgAAQEARPgAAQEARPgAAQEARPgAAQEARPgAAQEARPgAAQEARPgAAQEARPgAAQED5HT7KysqUlZWltm3bKjY2VhkZGSooKDDvNwxDc+bMUXJysmJjY9W/f38VFhbWa9MAAMB/5Wcq9XDuTq3dWWJrH36HjzvuuEN5eXlatmyZtm/frsGDB2vgwIH68ssvJUkLFy7UokWLtHjxYhUUFMjtdmvQoEEqKyur9+YBAEDNbDt4XBfNfEePrdmjic9/YmsvDsMwjJo++OTJk4qPj9ff//53DR8+3Kx3795d11xzjebNm6fk5GRlZWVp6tSpkqTy8nK5XC499NBDGjdu3Dl/DY/Ho8TERJWWliohIaEWvyUAAPBjc9/4TP/7YZF5fXvfdpp9bed6/TX8+fkd4883PnPmjCorK9WkSRNLPTY2VuvWrVNRUZGKi4s1ePBg8z6n06nMzEytX7/eZ/goLy9XeXm5pXkAAFB3p05XquOsdyy1/72tp37R0WVTR9/za+0SHx+vPn36aN68eTp8+LAqKyu1fPlybdy4UUeOHFFxcbEkyeWy/qZcLpd530/l5OQoMTHRvKWkpNTytwIAAH6wef83XsFj2+zBtgcPqRbP+Vi2bJkMw1Dr1q3ldDr16KOPatSoUYqOjjYf43A4LF9jGIZX7QfTp09XaWmpeTt48KC/LQEAgB+579Xtun7JR+b18G5J2vfgcCXGNrKxq3/za+0iSe3bt1d+fr6+++47eTweJSUl6aabblJqaqrcbrckqbi4WElJSebXlJSUeE1DfuB0OuV0OmvZPgAA+MGJijPqdP8qS23Zby7XFektberIt1q/z0fTpk2VlJSkY8eOadWqVbruuuvMAJKXl2c+rqKiQvn5+crIyKiXhgEAgLePvvjaK3h8+sDVQRc8pFpMPlatWiXDMHTRRRdpz549mjx5si666CLdfvvtcjgcysrKUnZ2ttLT05Wenq7s7GzFxcVp1KhRDdE/AAAR757/26aXtxwyr6+/9EI9fOMlNnZ0dn6Hj9LSUk2fPl2HDh3S+eefr+uvv14LFixQo0bf75GmTJmikydPavz48Tp27Jh69eql3NxcxcfH13vzAABEsm/Lz6jLbOu044Xf9lbvtBY2dVQzfr3PRyDwPh8AAJzbB7v/qVuf3mSpfTb3asU19nuuUC8a7H0+AACA/Sb8dYve2n7EvB7dq40W/KqrjR35h/ABAECIKD15Wpc8kGupvfy7DF3W9jybOqodwgcAACFgzY6vNPbZjy21HfOGqEmj6Gq+IngRPgAACHJjny3Qmh3//iTa3/RL1axrOtnYUd0QPgAACFLHvqtQj3l5ltrrv++rbhc2t6ehekL4AAAgCL3z6RHduXyLpbZz/hA5Y0JvzfJThA8AAILMqKc2aP0XX5vXv+vfXlOHdLSxo/pF+AAAIEgc/bZcPeevttTevusKdUoOr/e9InwAABAEXt92WHc9/4l53Tg6SoVzr1aj6Fp/DFvQInwAAGAjwzA0Ysl6fXLguFm7e2AHTRyYbl9TDYzwAQCATb7ynFKv7Hcttby7r1S6K7w/D43wAQCADf62+ZDufWmbeZ3QJEZbZg1STBiuWX6K8AEAQAAZhqGhf/lAO4rLzNq0oR11Z2Z7G7sKLMIHAAABcvj4SWU8uMZSW3NPptJaNrOpI3sQPgAACIC/btyvGa9+al67Epz6aNoARUU5bOzKHoQPAAAakGEYuupP72nf1yfM2v3XdNLYfqk2dmUvwgcAAA3k4DcndMXCtZba+5OvUpsWcTZ1FBwIHwAANICr/vSeio5+Z163axGnNff0j8g1y08RPgAAqEdnKqv0sxkrLbUFv+qi0b3a2tRR8CF8AABQT9buKNHtzxZYan+7s496tjvfpo6CE+EDAIB60HN+no5+W2GpFeUMk8PBmuWnCB8AANRBxZkqdZhpXbP0TjtfL/y2j00dBT/CBwAAtbRy+xH97q9bLLU3ft9PXS9MtKmj0ED4AACgFtJnvK3TlYalxpqlZsL/02sAAKhHp05Xqt20tyzBY+DFrbTvweEEjxpi8gEAQA29suWQJv3fNkttVdaVusgdb1NHoYnwAQBADbSb9pZXbd+Dw23oJPSxdgEA4Cy+Kz/jFTyu655M8KgDJh8AAFTjp59EK0lr7slUWstmNnUUHggfAAD4wJql4bB2AQDgR0pPnvYKHqN6tSF41CMmHwAA/MuEFVv01j+OWGofTLlKKefH2dRReCJ8AAAg1iyBxNoFABDR9pR86xU8OrrjCR4NiMkHACBiXTRzpcrPVFlqqydl6meteDVLQyJ8AAAiEmsW+7B2AQBElE+/LCV42IzJBwAgYvgKHXl3X6l0F5/NEkiEDwBARGDaETxYuwAAwtrH+77xCh4XNHMSPGzE5AMAELZ8TTven3yV2rTgTcPsRPgAAIQl1izBi7ULACCs5O/6p1fw6OBqRvAIIkw+AABhw9e0Y+N9A+RKaGJDN6gO4QMAEBZYs4QO1i4AgJC2bMN+r+CRGNuI4BHEmHwAAEKWr2nHphkD1CqeNUswI3wAAEKOYRhKnf62V51pR2hg7QIACCmPr93jFTx+1opXs4QSJh8AgJDha82y7f7BSoxrZEM3qC2/Jh9nzpzRzJkzlZqaqtjYWKWlpWnu3LmqqqoyH2MYhubMmaPk5GTFxsaqf//+KiwsrPfGAQCRo6rKqPbVLASP0ONX+HjooYf0xBNPaPHixfr888+1cOFC/fGPf9Rjjz1mPmbhwoVatGiRFi9erIKCArndbg0aNEhlZWX13jwAIPwteOszpd1nXbP0TjufNUsIcxiGYdT0wddcc41cLpeefvpps3b99dcrLi5Oy5Ytk2EYSk5OVlZWlqZOnSpJKi8vl8vl0kMPPaRx48ad89fweDxKTExUaWmpEhISavFbAgCEC1/Tjs/mXq24xjxrINj48/Pbr8lHv3799O6772rXrl2SpG3btmndunUaNmyYJKmoqEjFxcUaPHiw+TVOp1OZmZlav369z+9ZXl4uj8djuQEAItvpyqpq1ywEj9Dn1/+CU6dOVWlpqTp27Kjo6GhVVlZqwYIFGjlypCSpuLhYkuRyuSxf53K5tH//fp/fMycnRw888EBtegcAhKFZr32qZRusPzOGd03S46Mvtakj1De/wseLL76o5cuXa8WKFercubO2bt2qrKwsJScna8yYMebjHA6H5esMw/Cq/WD69OmaNGmSee3xeJSSkuJPWwCAMOFr2rFz/hA5Y6Jt6AYNxa/wMXnyZE2bNk0333yzJKlr167av3+/cnJyNGbMGLndbknfT0CSkpLMryspKfGahvzA6XTK6XTWtn8AQBg4XVml9Bkrveo8qTQ8+fWcjxMnTigqyvol0dHR5kttU1NT5Xa7lZeXZ95fUVGh/Px8ZWRk1EO7AIBws3T9Pq/gMWXIRQSPMObX5OPaa6/VggUL1KZNG3Xu3FmffPKJFi1apLFjx0r6ft2SlZWl7OxspaenKz09XdnZ2YqLi9OoUaMa5DcAAAhdvtYse7OHKSrK96oe4cGv8PHYY49p1qxZGj9+vEpKSpScnKxx48bp/vvvNx8zZcoUnTx5UuPHj9exY8fUq1cv5ebmKj4+vt6bBwCEplOnK9Vx1jtedaYdkcGv9/kIBN7nAwDC2+Nr9+iPq3Zaak/9uqcGdfL93ECEBn9+fvNiaQBAwPhasxTlDKv2FZEIT3yqLQCgwZWePF3tm4YRPCIPkw8AQIO67ZlNem/nPy21pWMvV2aHljZ1BLsRPgAADaa6aQciG2sXAEC9+2dZOcED1WLyAQCoV9c9/qG2HTxuqfFqFvwY4QMAUG+YdqAmWLsAAOrsy+MnCR6oMSYfAIA6uXLhWh345oSltuI/eymj/QU2dYRgR/gAANQa0w7UBmsXAIDfCg+XEjxQa0w+AAB+8RU6XpvQV91Tmge+GYQkwgcAoMaYdqA+sHYBAJzTx/u+IXig3jD5AACcla/Q8er4DPVoc54N3SAcED4AANVi2oGGwNoFAOBl837vNcv5TRsTPFAvmHwAACx8TTvyJ/dX2xZNbegG4YjwAQAwsWZBILB2AQDojW2HCR4IGCYfABDhfIWO9ydfpTYt4mzoBpGA8AEAEYxpB+zA2gUAItCKjQe8gkfTxtEEDwQEkw8AiDC+ph2b7hugVglNbOgGkYjwAQARwjAMpU5/26vOtAOBxtoFACLAcx/t8woeqRc0JXjAFkw+ACDM+VqzbL1/kJrHNbahG4DwAQBhq6rKUNp9rFkQfFi7AEAYeuzd3V7BY3AnF8EDQYHJBwCEGV9rls/nDlFs42gbugG8ET4AIEycrqxS+oyVXnWmHQg2hA8ACAOjntqg9V98band1DNFD/1HN5s6AqpH+ACAEOdrzbJr/lA1juFpfQhO/MkEgBB1sqKy2s9mIXggmDH5AIAQdPmC1SopK7fUerRprlfH97WpI6DmCB8AEGJ8TTv2LBiqmGimHQgN/EkFgBBReuJ0tWsWggdCCZMPAAgBvkLHkM5uPXHrZTZ0A9QN4QMAgpyv4LE3e5iiohw2dAPUHXM6AAhSX3lOVbtmIXgglDH5AIAg5Ct03NK7jeb/sqsN3QD1i/ABAEHGV/Aoyhkmh4NpB8IDaxcACBJ7Sr6tds1C8EA4YfIBAEHAV+j4dZ+2mntdFxu6ARoW4QMAbFbdtAMIV6xdAMAm2w4eJ3ggIjH5AAAb+AodkwZ10F0D0m3oBggswgcABBjTDkQ61i4AECDrdh8leADyM3y0a9dODofD6zZhwgRJkmEYmjNnjpKTkxUbG6v+/fursLCwQRoHgFDSbtpbuuXpjZba/F92IXggIvkVPgoKCnTkyBHzlpeXJ0m64YYbJEkLFy7UokWLtHjxYhUUFMjtdmvQoEEqKyur/84BIERUN+24pXdbG7oB7OdX+GjZsqXcbrd5e/PNN9W+fXtlZmbKMAw98sgjmjFjhkaMGKEuXbpo6dKlOnHihFasWNFQ/QNA0HrzH4dZswA+1PoJpxUVFVq+fLkmTZokh8OhvXv3qri4WIMHDzYf43Q6lZmZqfXr12vcuHE+v095ebnKy8vNa4/HU9uWACBo+Aodj4+6VMO7JdnQDRBcav2E09dee03Hjx/XbbfdJkkqLi6WJLlcLsvjXC6XeZ8vOTk5SkxMNG8pKSm1bQkAgkJ10w6CB/C9WoePp59+WkOHDlVycrKl/tPPHzAM46yfSTB9+nSVlpaat4MHD9a2JQCw1bIN+1mzADVQq7XL/v37tXr1ar3yyitmze12S/p+ApKU9O90X1JS4jUN+TGn0ymn01mbNgAgaPgKHct/00v90i+woRsguNVq8vHMM8+oVatWGj7832k+NTVVbrfbfAWM9P3zQvLz85WRkVH3TgEgSFU37SB4AL75PfmoqqrSM888ozFjxigm5t9f7nA4lJWVpezsbKWnpys9PV3Z2dmKi4vTqFGj6rVpAAgGj767W4vydnnVWbMAZ+d3+Fi9erUOHDigsWPHet03ZcoUnTx5UuPHj9exY8fUq1cv5ebmKj4+vl6aBYBg4Wva8fcJfXVJSvPANwOEGIdhGIbdTfyYx+NRYmKiSktLlZCQYHc7AOCFJ5UC3vz5+c0HywFADc167VMt27Dfq07wAPxD+ACAGvA17Vg9KVM/a9XMhm6A0Eb4AICzMAxDqdPf9qoz7QBqj/ABANUYt+xjrSr8yqtO8ADqhvABAD74WrN8NP0XSkqMtaEbILwQPgDgR6qqDKXdx5oFaEiEDwD4l18+/qG2HjzuVSd4APWL8AEA8r1m+WTWIJ3XtLEN3QDhjfABIKJVnKlSh5krvepMO4CGQ/gAELF6Za/WV55yrzrBA2hYhA8AEcnXmqXwgavV1Mk/i0BD428ZgIhysqJSF9//jledaQcQOIQPABHD17SjRdPG2jxrkA3dAJGL8AEgIvgKHrvmD1XjmCgbugEiG3/rAIS1b76r8Bk89j04nOAB2ITJB4Cw5St0dGmdoDf/cIUN3QD4AeEDQFjyFTy+yB6m6CiHDd0A+DFmjgDCyqFjJ6pdsxA8gODA5ANA2PAVOi5Jaa6/T+hrQzcAqkP4ABAWfAWPopxhcjiYdgDBhrULgJB28Jvq1ywEDyA4MfkAELJ8hY5Rvdoo+1ddbegGQE0RPgCEpOqmHQCCH2sXACFlZ3EZwQMIcUw+AIQMX6Fj1jWd9Jt+qTZ0A6C2CB8AQgLTDiB8sHYBENQ+/bKU4AGEGSYfAIKWr9Dx5K2XaXBntw3dAKgvhA8AQYlpBxC+WLsACCqbir4heABhjskHgKDhK3Ss+M9eymh/gQ3dAGgohA8AQYFpBxA5WLsAsNXr2w4TPIAIw+QDgG18hY7Xf99X3S5sHvhmAAQM4QOALZh2AJGLtQuAgFr20T6CBxDhmHwACBhfoeOtu/qpc3KiDd0AsAvhA0BAMO0A8APCB4AG9ZfVu/Xn1bu86gQPIHIRPgA0GF/Tjvfu7a92FzS1oRsAwYLwAaDeGYah1Olve9WZdgCQeLULgHq2YuMBggeAs2LyAaDe+FqzfDxzoC5o5rShGwDBivABoM5YswDwB2sXAHXy6ieHvIJHZoeWBA8A1WLyAaDWfK1ZPp87RLGNo23oBkCoIHwA8FtVlaG0+1izAKgd1i4A/LJsw36v4JE1MJ3gAaDGmHwAqDFfa5Zd84eqcQz/PwZAzfn9L8aXX36pW265RS1atFBcXJy6d++uzZs3m/cbhqE5c+YoOTlZsbGx6t+/vwoLC+u1aQCBdbqyqtrPZiF4APCXX/9qHDt2TH379lWjRo20cuVKffbZZ3r44YfVvHlz8zELFy7UokWLtHjxYhUUFMjtdmvQoEEqKyur794BBMB/vbdH6TNWWmqzrunEmgVArTkMwzBq+uBp06bpww8/1AcffODzfsMwlJycrKysLE2dOlWSVF5eLpfLpYceekjjxo0756/h8XiUmJio0tJSJSQk1LQ1AA3A17Tji+xhio5y2NANgGDmz89vvyYfr7/+unr27KkbbrhBrVq1Uo8ePfTUU0+Z9xcVFam4uFiDBw82a06nU5mZmVq/fr3P71leXi6Px2O5AbDXqdOV1a5ZCB4A6sqv8LF3714tWbJE6enpWrVqle68807dddddeu655yRJxcXFkiSXy2X5OpfLZd73Uzk5OUpMTDRvKSkptfl9AKgnD72zQx1nvWOpLby+G2sWAPXGr1e7VFVVqWfPnsrOzpYk9ejRQ4WFhVqyZIl+/etfm49zOKz/z8gwDK/aD6ZPn65JkyaZ1x6PhwAC2MTXtGNv9jBFMe0AUI/8mnwkJSWpU6dOltrFF1+sAwcOSJLcbrckeU05SkpKvKYhP3A6nUpISLDcAATWd+Vnql2zEDwA1De/wkffvn21c+dOS23Xrl1q27atJCk1NVVut1t5eXnm/RUVFcrPz1dGRkY9tAugvs14dbs6z15lqT0+6lLWLAAajF9rl7vvvlsZGRnKzs7WjTfeqE2bNunJJ5/Uk08+Ken7dUtWVpays7OVnp6u9PR0ZWdnKy4uTqNGjWqQ3wCA2vM17SjKGVbtmhQA6oNf4ePnP/+5Xn31VU2fPl1z585VamqqHnnkEY0ePdp8zJQpU3Ty5EmNHz9ex44dU69evZSbm6v4+Ph6bx5A7XxXfsZr2iHx2SwAAsOv9/kIBN7nA2hY//XeHi18x7o+fea2n+uqjq1s6ghAOPDn5zef7QJEkOqeVAoAgcSHMgARoPTEaa/g0T2lOcEDgC2YfABh7o+rdujxtV9Yau9kXaGObtaaAOxB+ADCGGsWAMGItQsQhr7ynPIKHld2aEnwABAUmHwAYea3z32s3M++stTW3JOptJbNbOoIAKwIH0AYYc0CIBSwdgHCwMFvTngFj0suTCR4AAhKTD6AEHfjf3+kTUXfWGpr7+2v1Aua2tQRAJwd4QMIYaxZAIQi1i5ACNpT8q1X8Lgi/QKCB4CQwOQDCDFDHnlfO4rLLLUPp/1CrZvH2tQRAPiH8AGEENYsAMIBaxcgBBQeLvUKHsO7JRE8AIQkJh9AkOud/a6KPacstU0zBqhVfBObOgKAuiF8AEGMNQuAcMTaBQhCm/cf8woeIy9vQ/AAEBaYfABB5qKZK1V+pspS23r/IDWPa2xTRwBQvwgfQBBhzQIgErB2AYLAh3uOegWPcVemETwAhCUmH4DNfE07Pn3gajVz8tcTQHjiXzfAJoZhKHX62151ph0Awh1rF8AGqz/7yit43DOoA8EDQERg8gEEmK81y455Q9SkUbQN3QBA4BE+gACpqjKUdh9rFgAgfAAB8Pq2w7rr+U8stdnXdtLtfVNt6ggA7EP4ABqYrzXLrvlD1TiGp1wBiEyED6CBnKms0s9mrPSqs2YBEOkIH0ADeGHTAU17ZbultvD6brrx5yk2dQQAwYPwAdQzX2uWL7KHKTrKYUM3ABB8WDoD9aT8TGW1n81C8ACAf2PyAdSDN7Yd1h9+8mqWxaN66JpuyTZ1BADBi/AB1FH3ubk6fuK0pbY3e5iimHYAgE+ED6CWys9U6qKZ73jVeTULAJwd4QOohbf+cUQTVmyx1N78Qz91aZ1oU0cAEDoIH4Cf2t/3tiqrDEutKGeYHA7WLABQE7zaBaihkxXfv5rlx8FjcCeX9j04nOABAH5g8gHUwMubD+mel7ZZarl3X6kOrnibOgKA0EX4AM6huvfuAADUDmsXoBrflp/xCh4jerQmeABAHTH5AHxYtmG/Zr32qaW29t7+Sr2gqU0dAUD4IHwAP8GaBQAaFmsX4F9KT5z2Ch639m5L8ACAesbkA5D01Pt7teDtzy21dVOv0oXnxdnUEQCEL8IHIh5rFgAILNYuiFhff1vuFTzGZaYRPACggTH5QET6y+rd+vPqXZbaxvsGyJXQxKaOACByED4QcVizAIC9WLsgYvh607C7B3YgeABAgDH5QET4YPc/devTmyy1zTMHqkUzp00dAUDk8mvyMWfOHDkcDsvN7Xab9xuGoTlz5ig5OVmxsbHq37+/CgsL671pwB8T/rrFEjy6tE7QvgeHEzwAwCZ+Tz46d+6s1atXm9fR0dHmfy9cuFCLFi3Ss88+qw4dOmj+/PkaNGiQdu7cqfh4Pv0TgVV68rQueSDXUnv5dxm6rO15NnUEAJBqET5iYmIs044fGIahRx55RDNmzNCIESMkSUuXLpXL5dKKFSs0bty4uncL1NCaHV9p7LMfW2o75g1Rk0bR1XwFACBQ/H7C6e7du5WcnKzU1FTdfPPN2rt3rySpqKhIxcXFGjx4sPlYp9OpzMxMrV+/vtrvV15eLo/HY7kBdfGbZwssweM3/VK178HhBA8ACBJ+TT569eql5557Th06dNBXX32l+fPnKyMjQ4WFhSouLpYkuVwuy9e4XC7t37+/2u+Zk5OjBx54oBatA1bHvqtQj3l5ltrrv++rbhc2t6chAIBPfoWPoUOHmv/dtWtX9enTR+3bt9fSpUvVu3dvSZLD4bB8jWEYXrUfmz59uiZNmmReezwepaSk+NMWoHc+LdadyzdbajvnD5EzhmkHAASbOr3UtmnTpuratat2796tX/7yl5Kk4uJiJSUlmY8pKSnxmob8mNPplNPJqw5Qe6Oe2qD1X3xtXk+4qr0mX93Rxo4AAGdTpzcZKy8v1+eff66kpCSlpqbK7XYrL+/fY++Kigrl5+crIyOjzo0CP3X0X5/N8uPg8fZdVxA8ACDI+TX5uPfee3XttdeqTZs2Kikp0fz58+XxeDRmzBg5HA5lZWUpOztb6enpSk9PV3Z2tuLi4jRq1KiG6h8R6vVth3XX85+Y142jo1Q492o1iuZNewEg2PkVPg4dOqSRI0fq6NGjatmypXr37q0NGzaobdu2kqQpU6bo5MmTGj9+vI4dO6ZevXopNzeX9/hAvTEMQyOWrNcnB46btbsHdtDEgen2NQUA8IvDMAzD7iZ+zOPxKDExUaWlpUpISLC7HQSREs8pXZ79rqWWd/eVSncRbgHAbv78/OazXRAS/rb5kO59aZt5ndAkRltmDVIMaxYACDmEDwQ1wzA09C8faEdxmVmbNrSj7sxsb2NXAIC6IHwgaB0+flIZD66x1Nbck6m0ls1s6ggAUB8IHwhKz286oOmvbDev3QlNtH7aLxQVVf0b1gEAQgPhA0HFMAz94uF8FR39zqzNvraTbu+bamNXAID6RPhA0Dj4zQldsXCtpfb+5KvUpkWcTR0BABoC4QNB4dkPizTnjc/M63Yt4rTmnv6sWQAgDBE+YKuqKkMZD65RseeUWVvwqy4a3autjV0BABoS4QO2KTr6na7603uW2vppv1By81h7GgIABAThA7b47/wvlLNyh3nd0R2vlROvkMPBmgUAwh3hAwFVWWWox9xceU6dMWt//I9uuqFnio1dAQACifCBgNn9VZkG/fl9S23jfQPkSmhiU0cAADsQPhAQj727Ww/n7TKve7Rprld+l8GaBQAiEOEDDep0ZZU6z16lijNVZu0vN3fXdd1b29gVAMBOhA80mM8OezTs0Q8stY9nDtQFzZw2dQQACAaEDzSIP67aocfXfmFe90lroed/29vGjgAAwYLwgXpVcaZKHWautNSWjL5UQ7sm2dQRACDYED5Qb/5x6Lj+3+IPLbVPZg3SeU0b29QRACAYET5QL+a/+Zn+Z12Ref2Ljq30v7f93MaOAADBivCBOjl1ulIdZ71jqT09pqcGXOyyqSMAQLAjfKDWNu8/puuXrLfUts0erMTYRjZ1BAAIBYQP1MrM17Zr+YYD5vWwrm791+jLbOwIABAqCB/wy8mKSl18v3XN8tzYy3Vlh5Y2dQQACDWED9TYxr1f66YnN1hqnz5wtZo5+WMEAKg5fmqgRu59aZv+tvmQeT3i0tZadGN3+xoCAIQswgfO6tvyM+oye5Wl9vx/9laf9i1s6ggAEOoIH6jWut1HdcvTGy21z+ZerbjG/LEBANQeP0Xg0+9XbNGb/zhiXo+8vI1yRnS1sSMAQLggfMDCc+q0us3JtdRe/l0fXdb2fJs6AgCEG8IHTGt3lOj2ZwsstR3zhqhJo2ibOgIAhCPCByRJdyz9WKs//8q8vr1vO82+trONHQEAwhXhI8IdP1Gh7nPzLLW/T+irS1Ka29MQACDsET4i2DufFuvO5ZsttZ3zh8gZw5oFANBwCB8R6pb/2ah1e46a17/r315Th3S0sSMAQKQgfESYo9+Wq+f81ZbaW3f1U+fkRJs6AgBEGsJHBHlj22H94flPzOvG0VEqnHu1GkVH2dgVACDSED4igGEY+o8nPtLm/cfMWtbAdGUN7GBjVwCASEX4CHMlnlO6PPtdSy337ivVwRVvU0cAgEhH+AhjL28+pHte2mZexzeJ0SezBimGNQsAwEaEjzBkGIaGP7pOnx3xmLWpQzrqd/3b29gVAADfI3yEmSOlJ9UnZ42l9u49mWrfsplNHQEAYEX4CCPPbzqg6a9sN69bxju1YfoARUc5bOwKAAArwkcYMAxDAx7O196j35m1Wdd00m/6pdrYFQAAvhE+QtzBb07oioVrLbX3J1+lNi3ibOoIAICzI3yEsKXr92n264XmdbsWcVpzT39FsWYBAAQxwkcIqqoy1PehNTpSesqszf9lF93Su62NXQEAUDOEjxCz7+h36v+n9yy1D6f9Qq2bx9rTEAAAfiJ8hJAn3/9C2W/vMK87uuO1cuIVcjhYswAAQgfhIwRUVhm6bH6ejp84bdb++B/ddEPPFBu7AgCgdur0Pts5OTlyOBzKysoya4ZhaM6cOUpOTlZsbKz69++vwsLC6r8JzmpPSZna3/e2JXhsvG8AwQMAELJqHT4KCgr05JNPqlu3bpb6woULtWjRIi1evFgFBQVyu90aNGiQysrK6txspHns3d0auOh98/qSlOYqyhkmV0ITG7sCAKBuahU+vv32W40ePVpPPfWUzjvvPLNuGIYeeeQRzZgxQyNGjFCXLl20dOlSnThxQitWrKi3psPd6coqXTRzpR7O22XW/nJzd/19Ql+e3wEACHm1Ch8TJkzQ8OHDNXDgQEu9qKhIxcXFGjx4sFlzOp3KzMzU+vXrfX6v8vJyeTweyy2SfX7Eo/QZK1V+psqsFcwYqOu6t7axKwAA6o/fTzh94YUXtGXLFhUUFHjdV1xcLElyuVyWusvl0v79+31+v5ycHD3wwAP+thGW/rRqpxav3WNe9047Xy/8to+NHQEAUP/8Ch8HDx7UxIkTlZubqyZNqn/ewU9XA4ZhVLsumD59uiZNmmReezwepaRE1pMpK85UqcPMlZbaktGXamjXJJs6AgCg4fgVPjZv3qySkhJddtllZq2yslLvv/++Fi9erJ07d0r6fgKSlPTvH5wlJSVe05AfOJ1OOZ3O2vQeFrYfKtW1i9dZap/MGqTzmja2qSMAABqWX8/5GDBggLZv366tW7eat549e2r06NHaunWr0tLS5Ha7lZeXZ35NRUWF8vPzlZGRUe/Nh7oFb31mCR79L2qpfQ8OJ3gAAMKaX5OP+Ph4denSxVJr2rSpWrRoYdazsrKUnZ2t9PR0paenKzs7W3FxcRo1alT9dR3iTp2uVMdZ71hqT4/pqQEX+54OAQAQTur9HU6nTJmikydPavz48Tp27Jh69eql3NxcxcfH1/cvFZK2HDimEf9lfeXPtvsHKzGukU0dAQAQWA7DMAy7m/gxj8ejxMRElZaWKiEhwe526tXM17Zr+YYD5vXQLm4tueWys3wFAAChwZ+f33y2SwCcrKjUxfdb1yxLx16uzA4tbeoIAAD7ED4a2Ma9X+umJzdYatvnDFZ8E9YsAIDIRPhoQJNf2qaXNh8yr3/Vo7X+fFN3+xoCACAIED4awHflZ9R59ipLbcV/9lJG+wts6ggAgOBB+KhnH+45qtH/s9FS+2zu1YprzFEDACARPurVH57/RG9sO2xej7w8RTkjutnYEQAAwYfwUQ88p06r25xcS+1vd/ZRz3bn29QRAADBi/BRR2t3luj2Z6yf8Ltj3hA1aRRtU0cAAAQ3wkcd3LH0Y63+/Cvz+raMdprz/zrb2BEAAMGP8FELx09UqPvcPEvttQl91T2luT0NAQAQQggfflpVWKxxyzZbajvnD5EzhjULAAA1Qfjwwy3/s1Hr9hw1r8dlpmn60Itt7AgAgNBD+KiBr78t12XzV1tqb/6hn7q0TrSpIwAAQhfh4xze/Mdh/X7FJ+Z1TJRDn88bokbRUTZ2BQBA6CJ8VMMwDN3wxEf6eP8xszZxQLruHtTBxq4AAAh9hA8fSjyndHn2u5baqqwrdZE73qaOAAAIH4SPn3hlyyFN+r9t5nUzZ4y23j9IMaxZAACoF4SPfzEMQ9c8tk6Fhz1mbcqQizS+/89s7AoAgPBD+JB0pPSk+uSssdTevSdT7Vs2s6kjAADCV8SHjxc2HdC0V7ab1y3jndowfYCioxw2dgUAQPiK2PBhGIYGLMrX3n9+Z9ZmDr9Yd1yRZmNXAACEv4gMHwe/OaErFq611PIn91fbFk1t6ggAgMgRceHjuY/26f6/F5rXKefHKv/eqxTFmgUAgICIqPAx9tkCrdlRYl7P+2UX3dq7rY0dAQAQeSImfBiGYQke66ZepQvPi7OxIwAAIlPEhA+Hw6GlYy/X/q+/062928rhYM0CAIAdIiZ8SFJmh5aSWtrdBgAAEY33DAcAAAFF+AAAAAFF+AAAAAFF+AAAAAFF+AAAAAFF+AAAAAFF+AAAAAFF+AAAAAFF+AAAAAFF+AAAAAFF+AAAAAFF+AAAAAFF+AAAAAEVdJ9qaxiGJMnj8djcCQAAqKkffm7/8HP8bIIufJSVlUmSUlJSbO4EAAD4q6ysTImJiWd9jMOoSUQJoKqqKh0+fFjx8fFyOBx2t2MLj8ejlJQUHTx4UAkJCXa3E5I4w7rjDOuOM6w7zrDuAnWGhmGorKxMycnJioo6+7M6gm7yERUVpQsvvNDuNoJCQkICf9nqiDOsO86w7jjDuuMM6y4QZ3iuiccPeMIpAAAIKMIHAAAIKMJHEHI6nZo9e7acTqfdrYQszrDuOMO64wzrjjOsu2A8w6B7wikAAAhvTD4AAEBAET4AAEBAET4AAEBAET4AAEBAET6CRE5OjhwOh7KyssyaYRiaM2eOkpOTFRsbq/79+6uwsNC+JoPMnDlz5HA4LDe3223ez/nVzJdffqlbbrlFLVq0UFxcnLp3767Nmzeb93OOZ9euXTuvP4cOh0MTJkyQxPnVxJkzZzRz5kylpqYqNjZWaWlpmjt3rqqqqszHcI7nVlZWpqysLLVt21axsbHKyMhQQUGBeX9QnaEB223atMlo166d0a1bN2PixIlm/cEHHzTi4+ONl19+2di+fbtx0003GUlJSYbH47Gv2SAye/Zso3PnzsaRI0fMW0lJiXk/53du33zzjdG2bVvjtttuMzZu3GgUFRUZq1evNvbs2WM+hnM8u5KSEsufwby8PEOSsXbtWsMwOL+amD9/vtGiRQvjzTffNIqKioyXXnrJaNasmfHII4+Yj+Ecz+3GG280OnXqZOTn5xu7d+82Zs+ebSQkJBiHDh0yDCO4zpDwYbOysjIjPT3dyMvLMzIzM83wUVVVZbjdbuPBBx80H3vq1CkjMTHReOKJJ2zqNrjMnj3buOSSS3zex/nVzNSpU41+/fpVez/n6L+JEyca7du3N6qqqji/Gho+fLgxduxYS23EiBHGLbfcYhgGfw5r4sSJE0Z0dLTx5ptvWuqXXHKJMWPGjKA7Q9YuNpswYYKGDx+ugQMHWupFRUUqLi7W4MGDzZrT6VRmZqbWr18f6DaD1u7du5WcnKzU1FTdfPPN2rt3ryTOr6Zef/119ezZUzfccINatWqlHj166KmnnjLv5xz9U1FRoeXLl2vs2LFyOBycXw3169dP7777rnbt2iVJ2rZtm9atW6dhw4ZJ4s9hTZw5c0aVlZVq0qSJpR4bG6t169YF3RkSPmz0wgsvaMuWLcrJyfG6r7i4WJLkcrksdZfLZd4X6Xr16qXnnntOq1at0lNPPaXi4mJlZGTo66+/5vxqaO/evVqyZInS09O1atUq3Xnnnbrrrrv03HPPSeLPob9ee+01HT9+XLfddpskzq+mpk6dqpEjR6pjx45q1KiRevTooaysLI0cOVIS51gT8fHx6tOnj+bNm6fDhw+rsrJSy5cv18aNG3XkyJGgO8Og+1TbSHHw4EFNnDhRubm5Xkn1xxwOh+XaMAyvWqQaOnSo+d9du3ZVnz591L59ey1dulS9e/eWxPmdS1VVlXr27Kns7GxJUo8ePVRYWKglS5bo17/+tfk4zrFmnn76aQ0dOlTJycmWOud3di+++KKWL1+uFStWqHPnztq6dauysrKUnJysMWPGmI/jHM9u2bJlGjt2rFq3bq3o6GhdeumlGjVqlLZs2WI+JljOkMmHTTZv3qySkhJddtlliomJUUxMjPLz8/Xoo48qJibGTKc/TaQlJSVeyRXfa9q0qbp27ardu3ebr3rh/M4uKSlJnTp1stQuvvhiHThwQJI4Rz/s379fq1ev1h133GHWOL+amTx5sqZNm6abb75ZXbt21a233qq7777bnApzjjXTvn175efn69tvv9XBgwe1adMmnT59WqmpqUF3hoQPmwwYMEDbt2/X1q1bzVvPnj01evRobd26VWlpaXK73crLyzO/pqKiQvn5+crIyLCx8+BVXl6uzz//XElJSeZfNs7v7Pr27audO3daart27VLbtm0liXP0wzPPPKNWrVpp+PDhZo3zq5kTJ04oKsr64yg6Otp8qS3n6J+mTZsqKSlJx44d06pVq3TdddcF3xkG/CmuqNaPX+1iGN+/LCoxMdF45ZVXjO3btxsjR47kpWU/cs899xjvvfeesXfvXmPDhg3GNddcY8THxxv79u0zDIPzq4lNmzYZMTExxoIFC4zdu3cbf/3rX424uDhj+fLl5mM4x3OrrKw02rRpY0ydOtXrPs7v3MaMGWO0bt3afKntK6+8YlxwwQXGlClTzMdwjuf2zjvvGCtXrjT27t1r5ObmGpdccolx+eWXGxUVFYZhBNcZEj6CyE/DR1VVlTF79mzD7XYbTqfTuPLKK43t27fb12CQ+eE16o0aNTKSk5ONESNGGIWFheb9nF/NvPHGG0aXLl0Mp9NpdOzY0XjyySct93OO57Zq1SpDkrFz506v+zi/c/N4PMbEiRONNm3aGE2aNDHS0tKMGTNmGOXl5eZjOMdze/HFF420tDSjcePGhtvtNiZMmGAcP37cvD+YztBhGIYR+HkLAACIVDznAwAABBThAwAABBThAwAABBThAwAABBThAwAABBThAwAABBThAwAABBThAwAABBThAwAABBThAwAABBThAwAABBThAwAABNT/ByxjoiM99hCNAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(yhat, yhat2);" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 283 }, "colab_type": "code", "id": "626Z0Ql66qWx", "outputId": "12617691-af4e-47d3-d080-10223101ec81" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxVklEQVR4nO3deXxU9b3/8fckgSHBJCjCTIIBAg0gm6DUQECDZZFFf7ZYN9Ci1FsstBJRNgFBlgRpy7WKF69eryIU9dqqdUMSEKOIQAShGGWTsAkxVUMmCiSQnN8f1lOPM4FMljmzvJ6Pxzwens9Mwodvgbz7+cziMAzDEAAAQIBE2d0AAACILIQPAAAQUIQPAAAQUIQPAAAQUIQPAAAQUIQPAAAQUIQPAAAQUIQPAAAQUDF2N/Bj1dXVOnr0qOLj4+VwOOxuBwAA1IJhGCovL1dycrKios4+2wi68HH06FGlpKTY3QYAAKiDw4cP66KLLjrrY4IufMTHx0v6rvmEhASbuwEAALXh8XiUkpJi/hw/m6ALH9+vWhISEggfAACEmNo8ZYInnAIAgIAifAAAgIAifAAAgIAifAAAgIAifAAAgIAifAAAgIAifAAAgIAifAAAgIAifAAAgIAifAAAgIAifAAAgIAifAAAgIDyO3yUl5crKytL7dq1U2xsrDIyMlRQUGDebxiG5s6dq+TkZMXGxmrgwIEqLCxs0KYBAID/Ks5U6U+5u7V+d4mtffgdPu68807l5eVpxYoV2rlzp4YOHarBgwfr888/lyQtXrxYS5Ys0dKlS1VQUCC3260hQ4aovLy8wZsHAAC1s+PwcXWe9ZYefXufJj33ka29OAzDMGr74JMnTyo+Pl5///vfNXLkSLPeq1cvXXPNNZo/f76Sk5OVlZWladOmSZIqKirkcrn00EMPafz48ef8NTwejxITE1VWVqaEhIQ6/JYAAMAPzXvtE/3v+0Xm9R3922vOtd0a9Nfw5+d3jD/f+MyZM6qqqlKzZs0s9djYWG3YsEFFRUUqLi7W0KFDzfucTqcyMzO1ceNGn+GjoqJCFRUVluYBAED9nTpdpS6z37LU/vf2PvpZF5dNHX3Hr7VLfHy8+vXrp/nz5+vo0aOqqqrSypUrtXnzZh07dkzFxcWSJJfL+ptyuVzmfT+Wk5OjxMRE85aSklLH3woAAPje1oNfewWPHXOG2h48pDo852PFihUyDENt2rSR0+nUI488otGjRys6Otp8jMPhsHyNYRhete/NmDFDZWVl5u3w4cP+tgQAAH7g/pd36vplH5jXI3sm6cCikUqMbWJjV//m19pFkjp27Kj8/Hx9++238ng8SkpK0k033aTU1FS53W5JUnFxsZKSksyvKSkp8ZqGfM/pdMrpdNaxfQAA8L0TlWfU9YE1ltqKX1+uK9Ja2dSRb3V+n4/mzZsrKSlJpaWlWrNmja677jozgOTl5ZmPq6ysVH5+vjIyMhqkYQAA4O2Dz77yCh4fP3h10AUPqQ6TjzVr1sgwDHXu3Fn79u3TlClT1LlzZ91xxx1yOBzKyspSdna20tLSlJaWpuzsbMXFxWn06NGN0T8AABHv3v/bob9tO2JeX3/pRfrTjZfY2NHZ+R0+ysrKNGPGDB05ckQXXHCBrr/+ei1cuFBNmny3R5o6dapOnjypCRMmqLS0VOnp6crNzVV8fHyDNw8AQCT7puKMus+xTjue/01f9e3Q0qaOasev9/kIBN7nAwCAc3tv7z9121NbLLVP5l2tuKZ+zxUaRKO9zwcAALDfxL9s0xs7j5nXY9LbauEvetjYkX8IHwAAhIiyk6d1yYO5ltrffpuhy9qdb1NHdUP4AAAgBLy96wuNe+ZDS23X/GFq1iS6hq8IXoQPAACC3LhnCvT2rn9/Eu2vB6Rq9jVdbeyofggfAAAEqdJvK9V7fp6l9urv+qvnRS3saaiBED4AAAhCb318THet3Gap7V4wTM6Y0Fuz/BjhAwCAIDP6yU3a+NlX5vVvB3bUtGFdbOyoYRE+AAAIEl9+U6E+C9Zaam/efYW6JofX+14RPgAACAKv7jiqu5/7yLxuGh2lwnlXq0l0nT+GLWgRPgAAsJFhGBq1bKM+OnTcrN0zuJMmDU6zr6lGRvgAAMAmX3hOKT17naWWd8+VSnOF9+ehET4AALDBX7ce0X0v7jCvE5rFaNvsIYoJwzXLjxE+AAAIIMMwNPzP72lXcblZmz68i+7K7GhjV4FF+AAAIECOHj+pjEVvW2pv35upDq3Os6kjexA+AAAIgL9sPqiZL39sXrsSnPpg+iBFRTls7MoehA8AABqRYRi66o/v6MBXJ8zaA9d01bgBqTZ2ZS/CBwAAjeTw1yd0xeL1ltq7U65S25ZxNnUUHAgfAAA0gqv++I6KvvzWvG7fMk5v3zswItcsP0b4AACgAZ2pqtZPZq621Bb+orvGpLezqaPgQ/gAAKCBrN9VojueKbDU/npXP/Vpf4FNHQUnwgcAAA2gz4I8fflNpaVWlDNCDgdrlh8jfAAAUA+VZ6rVaZZ1zdK3wwV6/jf9bOoo+BE+AACoo9U7j+m3f9lmqb32uwHqcVGiTR2FBsIHAAB1kDbzTZ2uMiw11iy1E/6fXgMAQAM6dbpK7ae/YQkegy9urQOLRhI8aonJBwAAtfTStiOa/H87LLU1WVeqszvepo5CE+EDAIBaaD/9Da/agUUjbegk9LF2AQDgLL6tOOMVPK7rlUzwqAcmHwAA1ODHn0QrSW/fm6kOrc6zqaPwQPgAAMAH1iyNh7ULAAA/UHbytFfwGJ3eluDRgJh8AADwLxNXbdMb/zhmqb039SqlXBBnU0fhifABAIBYswQSaxcAQETbV/KNV/Do4o4neDQiJh8AgIjVedZqVZypttTWTs7UT1rzapbGRPgAAEQk1iz2Ye0CAIgoH39eRvCwGZMPAEDE8BU68u65UmkuPpslkAgfAICIwLQjeLB2AQCEtQ8PfO0VPC48z0nwsBGTDwBA2PI17Xh3ylVq25I3DbMT4QMAEJZYswQv1i4AgLCSv+efXsGjk+s8gkcQYfIBAAgbvqYdm+8fJFdCMxu6QU0IHwCAsMCaJXSwdgEAhLQVmw56BY/E2CYEjyDG5AMAELJ8TTu2zByk1vGsWYIZ4QMAEHIMw1DqjDe96kw7QgNrFwBASHls/T6v4PGT1ryaJZQw+QAAhAxfa5YdDwxVYlwTG7pBXfk1+Thz5oxmzZql1NRUxcbGqkOHDpo3b56qq6vNxxiGoblz5yo5OVmxsbEaOHCgCgsLG7xxAEDkqK42anw1C8Ej9PgVPh566CE9/vjjWrp0qT799FMtXrxYf/jDH/Too4+aj1m8eLGWLFmipUuXqqCgQG63W0OGDFF5eXmDNw8ACH8L3/hEHe63rln6driANUsIcxiGYdT2wddcc41cLpeeeuops3b99dcrLi5OK1askGEYSk5OVlZWlqZNmyZJqqiokMvl0kMPPaTx48ef89fweDxKTExUWVmZEhIS6vBbAgCEC1/Tjk/mXa24pjxrINj48/Pbr8nHgAEDtG7dOu3Zs0eStGPHDm3YsEEjRoyQJBUVFam4uFhDhw41v8bpdCozM1MbN270+T0rKirk8XgsNwBAZDtdVV3jmoXgEfr8+l9w2rRpKisrU5cuXRQdHa2qqiotXLhQt9xyiySpuLhYkuRyuSxf53K5dPDgQZ/fMycnRw8++GBdegcAhKHZr3ysFZusPzNG9kjSY2MutakjNDS/wscLL7yglStXatWqVerWrZu2b9+urKwsJScna+zYsebjHA6H5esMw/CqfW/GjBmaPHmyee3xeJSSkuJPWwCAMOFr2rF7wTA5Y6Jt6AaNxa/wMWXKFE2fPl0333yzJKlHjx46ePCgcnJyNHbsWLndbknfTUCSkpLMryspKfGahnzP6XTK6XTWtX8AQBg4XVWttJmrveo8qTQ8+fWcjxMnTigqyvol0dHR5kttU1NT5Xa7lZeXZ95fWVmp/Px8ZWRkNEC7AIBws3zjAa/gMXVYZ4JHGPNr8nHttddq4cKFatu2rbp166aPPvpIS5Ys0bhx4yR9t27JyspSdna20tLSlJaWpuzsbMXFxWn06NGN8hsAAIQuX2uW/dkjFBXle1WP8OBX+Hj00Uc1e/ZsTZgwQSUlJUpOTtb48eP1wAMPmI+ZOnWqTp48qQkTJqi0tFTp6enKzc1VfHx8gzcPAAhNp05Xqcvst7zqTDsig1/v8xEIvM8HAIS3x9bv0x/W7LbUnvxVHw3p6vu5gQgN/vz85sXSAICA8bVmKcoZUeMrIhGe+FRbAECjKzt5usY3DSN4RB4mHwCARnX701v0zu5/WmrLx12uzE6tbOoIdiN8AAAaTU3TDkQ21i4AgAb3z/IKggdqxOQDANCgrnvsfe04fNxS49Us+CHCBwCgwTDtQG2wdgEA1Nvnx08SPFBrTD4AAPVy5eL1OvT1CUtt1X+kK6PjhTZ1hGBH+AAA1BnTDtQFaxcAgN8Kj5YRPFBnTD4AAH7xFTpemdhfvVJaBL4ZhCTCBwCg1ph2oCGwdgEAnNOHB74meKDBMPkAAJyVr9Dx8oQM9W57vg3dIBwQPgAANWLagcbA2gUA4GXrQe81ywXNmxI80CCYfAAALHxNO/KnDFS7ls1t6AbhiPABADCxZkEgsHYBAOi1HUcJHggYJh8AEOF8hY53p1ylti3jbOgGkYDwAQARjGkH7MDaBQAi0KrNh7yCR/Om0QQPBASTDwCIML6mHVvuH6TWCc1s6AaRiPABABHCMAylznjTq860A4HG2gUAIsCzHxzwCh6pFzYneMAWTD4AIMz5WrNsf2CIWsQ1taEbgPABAGGrutpQh/tZsyD4sHYBgDD06Lq9XsFjaFcXwQNBgckHAIQZX2uWT+cNU2zTaBu6AbwRPgAgTJyuqlbazNVedaYdCDaEDwAIA6Of3KSNn31lqd3UJ0UP/bKnTR0BNSN8AECI87Vm2bNguJrG8LQ+BCf+ZAJAiDpZWVXjZ7MQPBDMmHwAQAi6fOFalZRXWGq927bQyxP629QRUHuEDwAIMb6mHfsWDldMNNMOhAb+pAJAiCg7cbrGNQvBA6GEyQcAhABfoWNYN7cev+0yG7oB6ofwAQBBzlfw2J89QlFRDhu6AeqPOR0ABKkvPKdqXLMQPBDKmHwAQBDyFTpu7dtWC37ew4ZugIZF+ACAIOMreBTljJDDwbQD4YG1CwAEiX0l39S4ZiF4IJww+QCAIOArdPyqXzvNu667Dd0AjYvwAQA2q2naAYQr1i4AYJMdh48TPBCRmHwAgA18hY7JQzrp7kFpNnQDBBbhAwACjGkHIh1rFwAIkA17vyR4APIzfLRv314Oh8PrNnHiREmSYRiaO3eukpOTFRsbq4EDB6qwsLBRGgeAUNJ++hu69anNltqCn3cneCAi+RU+CgoKdOzYMfOWl5cnSbrhhhskSYsXL9aSJUu0dOlSFRQUyO12a8iQISovL2/4zgEgRNQ07bi1bzsbugHs51f4aNWqldxut3l7/fXX1bFjR2VmZsowDD388MOaOXOmRo0ape7du2v58uU6ceKEVq1a1Vj9A0DQev0fR1mzAD7U+QmnlZWVWrlypSZPniyHw6H9+/eruLhYQ4cONR/jdDqVmZmpjRs3avz48T6/T0VFhSoqKsxrj8dT15YAIGj4Ch2Pjb5UI3sm2dANEFzq/ITTV155RcePH9ftt98uSSouLpYkuVwuy+NcLpd5ny85OTlKTEw0bykpKXVtCQCCQk3TDoIH8J06h4+nnnpKw4cPV3JysqX+488fMAzjrJ9JMGPGDJWVlZm3w4cP17UlALDVik0HWbMAtVCntcvBgwe1du1avfTSS2bN7XZL+m4CkpT073RfUlLiNQ35IafTKafTWZc2ACBo+AodK3+drgFpF9rQDRDc6jT5ePrpp9W6dWuNHPnvNJ+amiq3222+Akb67nkh+fn5ysjIqH+nABCkapp2EDwA3/yefFRXV+vpp5/W2LFjFRPz7y93OBzKyspSdna20tLSlJaWpuzsbMXFxWn06NEN2jQABINH1u3Vkrw9XnXWLMDZ+R0+1q5dq0OHDmncuHFe902dOlUnT57UhAkTVFpaqvT0dOXm5io+Pr5BmgWAYOFr2vHq7/qr50UtAt8MEGIchmEYdjfxQx6PR4mJiSorK1NCQoLd7QCAF55UCnjz5+c3HywHALU0+5WPtWLTQa86wQPwD+EDAGrB17Rj7eRM/aT1eTZ0A4Q2wgcAnIVhGEqd8aZXnWkHUHeEDwCowfgVH2pN4RdedYIHUD+EDwDwwdea5YMZP1NSYqwN3QDhhfABAD9QXW2ow/2sWYDGRPgAgH/5+WPva/vh4151ggfQsAgfACDfa5aPZg/R+c2b2tANEN4IHwAiWuWZanWatdqrzrQDaDyEDwAR6/KFa1VSXuFVJ3gAjYvwASAi+VqzFD54tZo7+WcRaGz8LQMQUU5UnlHXB9Z41Zl2AIFD+AAQMXxNOy48r6k+nDXEhm6AyEX4ABARfAWPPQuGq2lMlA3dAJGNv3UAwtrX31b6DB4HFo0keAA2YfIBIGz5Ch092iTqtd8PsKEbAN8jfAAIS76Cx2fZIxQd5bChGwA/xMwRQFg5UnqixjULwQMIDkw+AIQNX6HjkpQW+vvE/jZ0A6AmhA8AYcFX8CjKGSGHg2kHEGxYuwAIaYe/rnnNQvAAghOTDwAhy1foGJPeVgt/0cOGbgDUFuEDQEiqadoBIPixdgEQUnYXlxM8gBDH5ANAyPAVOmZf01W/HpBqQzcA6orwASAkMO0AwgdrFwBB7ePPywgeQJhh8gEgaPkKHU/cdpmGdnPb0A2AhkL4ABCUmHYA4Yu1C4CgsqXoa4IHEOaYfAAIGr5Cx6r/SFdGxwtt6AZAYyF8AAgKTDuAyMHaBYCtXt1xlOABRBgmHwBs4yt0vPq7/up5UYvANwMgYAgfAGzBtAOIXKxdAATUig8OEDyACMfkA0DA+Aodb9w9QN2SE23oBoBdCB8AAoJpB4DvET4ANKo/r92r/1y7x6tO8AAiF+EDQKPxNe14576Ban9hcxu6ARAsCB8AGpxhGEqd8aZXnWkHAIlXuwBoYKs2HyJ4ADgrJh8AGoyvNcuHswbrwvOcNnQDIFgRPgDUG2sWAP5g7QKgXl7+6IhX8BjYuRXBA0CNmHwAqDNfa5ZP5w1TbNNoG7oBECoIHwD8VlVtqOP9rFkA1A1rFwB+WfHBAa/gcc/gTgQPALXG5ANArflas+xZMFxNY/j/MQBqz+9/MT7//HPdeuutatmypeLi4tSrVy9t3brVvN8wDM2dO1fJycmKjY3VwIEDVVhY2KBNAwis01XVNX42C8EDgL/8+lejtLRU/fv3V5MmTbR69Wp98skn+tOf/qQWLVqYj1m8eLGWLFmipUuXqqCgQG63W0OGDFF5eXlD9w4gAJa985nSZq621GZf05U1C4A6cxiGYdT2wdOnT9f777+v9957z+f9hmEoOTlZWVlZmjZtmiSpoqJCLpdLDz30kMaPH3/OX8Pj8SgxMVFlZWVKSEiobWsAGoGvacdn2SMUHeWwoRsAwcyfn99+TT5effVV9enTRzfccINat26t3r1768knnzTvLyoqUnFxsYYOHWrWnE6nMjMztXHjRp/fs6KiQh6Px3IDYK9Tp6tqXLMQPADUl1/hY//+/Vq2bJnS0tK0Zs0a3XXXXbr77rv17LPPSpKKi4slSS6Xy/J1LpfLvO/HcnJylJiYaN5SUlLq8vsA0EAeemuXusx+y1JbfH1P1iwAGoxfr3aprq5Wnz59lJ2dLUnq3bu3CgsLtWzZMv3qV78yH+dwWP+fkWEYXrXvzZgxQ5MnTzavPR4PAQSwia9px/7sEYpi2gGgAfk1+UhKSlLXrl0ttYsvvliHDh2SJLndbknymnKUlJR4TUO+53Q6lZCQYLkBCKxvK87UuGYheABoaH6Fj/79+2v37t2W2p49e9SuXTtJUmpqqtxut/Ly8sz7KysrlZ+fr4yMjAZoF0BDm/nyTnWbs8ZSe2z0paxZADQav9Yu99xzjzIyMpSdna0bb7xRW7Zs0RNPPKEnnnhC0nfrlqysLGVnZystLU1paWnKzs5WXFycRo8e3Si/AQB152vaUZQzosY1KQA0BL/Cx09/+lO9/PLLmjFjhubNm6fU1FQ9/PDDGjNmjPmYqVOn6uTJk5owYYJKS0uVnp6u3NxcxcfHN3jzAOrm24ozXtMOic9mARAYfr3PRyDwPh9A4/qvd/Zp8VvW9enTd/xUV3VubVNHAMKBPz+/+WwXIILU9KRSAAgkPpQBiABlJ057BY/ebVsQPADYgskHEOb+sGaXHlv/maX2VtYV6uJmrQnAHoQPIIyxZgEQjFi7AGHoC88pr+BxZadWBA8AQYHJBxBmfvPsh8r95AtLbf19A5V6YXObOgIAK8IHEEZYswAIBaxdgDBw+OsTXsHjkosSCR4AghKTDyDE3fTfH2hz0deWGmsWAMGM8AGEMNYsAEIRaxcgBO0r+cYreFyRdiHBA0BIYPIBhJhhD7+rXcXlltr703+mNi1ibeoIAPxD+ABCCGsWAOGAtQsQAj7+vMwreFzTM4ngASAkMfkAglzf7HUq9pyy1ApmDlareKdNHQFA/RA+gCDGmgVAOGLtAgShrQdLvYLH6PS2BA8AYYHJBxBkOs9arYoz1Zba9geGqEVcU5s6AoCGRfgAgghrFgCRgLULEAQ27vvSK3iMv7IDwQNAWGLyAdjM17Tj4wev1nlO/noCCE/86wbYxDAMpc5406vOtANAuGPtAthg7SdfeAWP+4Z2IngAiAhMPoAA87Vm2TV/mJo1ibahGwAIPMIHECDV1YY63M+aBQAIH0AA/H3755r0/HZLbc61XXVH/1R7GgIAGxE+gEbma82yZ8FwNY3hKVcAIhPhA2gkZ6qq9ZOZq73qrFkARDrCB9AInttySDNe2mmpLf5lT93YJ8WmjgAgeBA+gAbma83yWfYIRUc5bOgGAIIPS2eggVScqarxs1kIHgDwb0w+gAbw2o6j+v1zH1lqj42+VCN7JtnUEQAEL8IHUE+95+Wq9MRpS21/9ghFMe0AAJ8IH0AdVZypUudZb3nVeTULAJwd4QOogzf+cUwTV22z1F7//QB1b5NoU0cAEDoIH4CfOt7/pqqqDUutKGeEHA7WLABQG7zaBailk5XfvZrlh8FjaFeXDiwaSfAAAD8w+QBq4a9bj+i+F3dYarn3XKlOrnibOgKA0EX4AM6hpvfuAADUDWsXoAbfVJzxCh6jercheABAPTH5AHxYsemgZr/ysaX2zn0D1f7C5jZ1BADhg/AB/AhrFgBoXKxdgH8pO3HaK3jc1rcdwQMAGhiTD0DSE+9+puw3d1lqG6ZdpYvOj7OpIwAIX4QPRDzWLAAQWKxdELG++qbCK3iMz+xA8ACARsbkAxHpz2v36j/X7rHUNt8/SK6EZjZ1BACRg/CBiMOaBQDsxdoFEcPXm4bdM7gTwQMAAozJByLCe3v/qdue2mKpbZ01WC3Pc9rUEQBELr8mH3PnzpXD4bDc3G63eb9hGJo7d66Sk5MVGxurgQMHqrCwsMGbBvwx8S/bLMGje5sEHVg0kuABADbxe/LRrVs3rV271ryOjo42/3vx4sVasmSJnnnmGXXq1EkLFizQkCFDtHv3bsXH8+mfCKyyk6d1yYO5ltrffpuhy9qdb1NHAACpDuEjJibGMu34nmEYevjhhzVz5kyNGjVKkrR8+XK5XC6tWrVK48ePr3+3QC29vesLjXvmQ0tt1/xhatYkuoavAAAEit9PON27d6+Sk5OVmpqqm2++Wfv375ckFRUVqbi4WEOHDjUf63Q6lZmZqY0bN9b4/SoqKuTxeCw3oD5+/UyBJXj8ekCqDiwaSfAAgCDh1+QjPT1dzz77rDp16qQvvvhCCxYsUEZGhgoLC1VcXCxJcrlclq9xuVw6ePBgjd8zJydHDz74YB1aB6xKv61U7/l5ltqrv+uvnhe1sKchAIBPfoWP4cOHm//do0cP9evXTx07dtTy5cvVt29fSZLD4bB8jWEYXrUfmjFjhiZPnmxeezwepaSk+NMWoLc+LtZdK7daarsXDJMzhmkHAASber3Utnnz5urRo4f27t2rn//855Kk4uJiJSUlmY8pKSnxmob8kNPplNPJqw5Qd6Of3KSNn31lXk+8qqOmXN3Fxo4AAGdTrzcZq6io0KeffqqkpCSlpqbK7XYrL+/fY+/Kykrl5+crIyOj3o0CP/blvz6b5YfB4827ryB4AECQ82vycd999+naa69V27ZtVVJSogULFsjj8Wjs2LFyOBzKyspSdna20tLSlJaWpuzsbMXFxWn06NGN1T8i1Ks7juru5z4yr5tGR6lw3tVqEs2b9gJAsPMrfBw5ckS33HKLvvzyS7Vq1Up9+/bVpk2b1K5dO0nS1KlTdfLkSU2YMEGlpaVKT09Xbm4u7/GBBmMYhkYt26iPDh03a/cM7qRJg9PsawoA4BeHYRiG3U38kMfjUWJiosrKypSQkGB3OwgiX3hOKT17naWWd8+VSnMRbgHAbv78/OazXRAS/rr1iO57cYd5ndAsRttmD1EMaxYACDmEDwQ1wzA0/M/vaVdxuVmbPryL7srsaGNXAID6IHwgaB09flIZi9621N6+N1MdWp1nU0cAgIZA+EBQWrX5kO5/ead57U5opo3Tf6aoqJrfsA4AEBoIHwgqhmHoqj++owNfnTBrc67tqjv6p9rYFQCgIRE+EDQOf31CVyxeb6m9O+UqtW0ZZ1NHAIDGQPhAUHj6/SI9+Non5nX7lnF6+96BrFkAIAwRPmCr6mpD/Rat0xeeCrO28BfdNSa9nY1dAQAaE+EDtin68ltd9cd3LLWN03+m5Bax9jQEAAgIwgds8d/5nyln9S7zuos7XqsnXSGHgzULAIQ7wgcCqqraUO95ufKcOmPW/vDLnrqhT4qNXQEAAonwgYDZ+0W5hvznu5ba5vsHyZXQzKaOAAB2IHwgIB5Zt1dL8vaY173bttBLv81gzQIAEYjwgUZ1uqpa3R5Yo8qqarP255t76bpebWzsCgBgJ8IHGs0nRz0a8ch7ltqHswbrwvOcNnUEAAgGhA80ij+s2aXH1n9mXvfr0FLP/aavjR0BAIIF4QMNqvJMtTrNWm2pLRtzqYb3SLKpIwBAsCF8oMH848hx/b+l71tqH80eovObN7WpIwBAMCJ8oEEseP0T/c+GIvP6Z11a639v/6mNHQEAghXhA/Vy6nSVusx+y1J7amwfDbrYZVNHAIBgR/hAnW09WKrrl2201HbMGarE2CY2dQQACAWED9TJrFd2auWmQ+b1iB5u/deYy2zsCAAQKggf8MvJyipd/IB1zfLsuMt1ZadWNnUEAAg1hA/U2qb9X+nmJzZZah8/eLXOc/LHCABQe/zUQK3c9+IO/XXrEfN61KVttOTGXvY1BAAIWYQPnNU3FWfUfc4aS+25/+irfh1b2tQRACDUET5Qow17v9StT2221D6Zd7XimvLHBgBQd/wUgU+/W7VNr//jmHl9y+VtlTOqh40dAQDCBeEDFp5Tp9Vzbq6l9rff9tNl7S6wqSMAQLghfMC0fleJ7nimwFLbNX+YmjWJtqkjAEA4InxAknTn8gKt/bTEvL6jf3vNubabjR0BAMIV4SPCHT9RqV7z8iy1v0/sr0tSWtjTEAAg7BE+IthbHxfrrpVbLbXdC4bJGcOaBQDQeAgfEerW/9msDfu+NK9/O7Cjpg3rYmNHAIBIQfiIMF9+U6E+C9Zaam/cPUDdkhNt6ggAEGkIHxHktR1H9fvnPjKvm0ZHqXDe1WoSHWVjVwCASEP4iACGYeiXj3+grQdLzVrW4DRlDe5kY1cAgEhF+AhzJZ5Tujx7naWWe8+V6uSKt6kjAECkI3yEsb9tPaJ7X9xhXsc3i9FHs4cohjULAMBGhI8wZBiGRjyyQZ8e85i1acO66LcDO9rYFQAA3yF8hJmjx08qY9Hbltq6ezPVsdV5NnUEAIAV4SOMPLflkGa8tNO8bhXv1KYZgxQd5bCxKwAArAgfYcAwDA36U772f/mtWZt9TVf9ekCqjV0BAOAb4SPEHf76hK5YvN5Se3fKVWrbMs6mjgAAODvCRwhbvvGA5rxaaF63bxmnt+8dqCjWLACAIEb4CEHV1Yb6P/S2jpWdMmsLft5dt/ZtZ2NXAADUDuEjxBR9+a2u+uM7ltr703+mNi1i7WkIAAA/ET5CyBPvfqbsN3eZ113c8Vo96Qo5HKxZAAChg/ARAqqqDV06P09lJ0+btT/8sqdu6JNiY1cAANRNvd5nOycnRw6HQ1lZWWbNMAzNnTtXycnJio2N1cCBA1VYWFjzN8FZ7SspV8f737QEj833DyJ4AABCVp3DR0FBgZ544gn17NnTUl+8eLGWLFmipUuXqqCgQG63W0OGDFF5eXm9m400j67bq8FL3jWvL0lpoaKcEXIlNLOxKwAA6qdO4eObb77RmDFj9OSTT+r8888364Zh6OGHH9bMmTM1atQode/eXcuXL9eJEye0atWqBms63J2uqlbnWav1p7w9Zu3PN/fS3yf25/kdAICQV6fwMXHiRI0cOVKDBw+21IuKilRcXKyhQ4eaNafTqczMTG3cuNHn96qoqJDH47HcItmnxzxKm7laFWeqzVrBzMG6rlcbG7sCAKDh+P2E0+eff17btm1TQUGB133FxcWSJJfLZam7XC4dPHjQ5/fLycnRgw8+6G8bYemPa3Zr6fp95nXfDhfo+d/0s7EjAAAanl/h4/Dhw5o0aZJyc3PVrFnNzzv48WrAMIwa1wUzZszQ5MmTzWuPx6OUlMh6MmXlmWp1mrXaUls25lIN75FkU0cAADQev8LH1q1bVVJSossuu8ysVVVV6d1339XSpUu1e/duSd9NQJKS/v2Ds6SkxGsa8j2n0ymn01mX3sPCziNlunbpBkvto9lDdH7zpjZ1BABA4/LrOR+DBg3Szp07tX37dvPWp08fjRkzRtu3b1eHDh3kdruVl5dnfk1lZaXy8/OVkZHR4M2HuoVvfGIJHgM7t9KBRSMJHgCAsObX5CM+Pl7du3e31Jo3b66WLVua9aysLGVnZystLU1paWnKzs5WXFycRo8e3XBdh7hTp6vUZfZbltpTY/to0MW+p0MAAISTBn+H06lTp+rkyZOaMGGCSktLlZ6ertzcXMXHxzf0LxWSth0q1aj/sr7yZ8cDQ5UY18SmjgAACCyHYRiG3U38kMfjUWJiosrKypSQkGB3Ow1q1is7tXLTIfN6eHe3lt162Vm+AgCA0ODPz28+2yUATlZW6eIHrGuW5eMuV2anVjZ1BACAfQgfjWzz/q900xObLLWdc4cqvhlrFgBAZCJ8NKIpL+7Qi1uPmNe/6N1G/3lTL/saAgAgCBA+GsG3FWfUbc4aS23Vf6Qro+OFNnUEAEDwIHw0sPf3fakx/7PZUvtk3tWKa8pRAwAgET4a1O+f+0iv7ThqXt9yeYpyRvW0sSMAAIIP4aMBeE6dVs+5uZbaX+/qpz7tL7CpIwAAghfho57W7y7RHU9bP+F31/xhatYk2qaOAAAIboSPerhz+Yda++kX5vXtGe019/91s7EjAACCH+GjDo6fqFSveXmW2isT+6tXSgt7GgIAIIQQPvy0prBY41dstdR2LxgmZwxrFgAAaoPw4Ydb/2ezNuz70rwen9lBM4ZfbGNHAACEHsJHLXz1TYUuW7DWUnv99wPUvU2iTR0BABC6CB/n8Po/jup3qz4yr2OiHPp0/jA1iY6ysSsAAEIX4aMGhmHohsc/0IcHS83apEFpumdIJxu7AgAg9BE+fCjxnNLl2esstTVZV6qzO96mjgAACB+Ejx95adsRTf6/Heb1ec4YbX9giGJYswAA0CAIH/9iGIaueXSDCo96zNrUYZ01YeBPbOwKAIDwQ/iQdKzspPrlvG2prbs3Ux1bnWdTRwAAhK+IDx/Pbzmk6S/tNK9bxTu1acYgRUc5bOwKAIDwFbHhwzAMDVqSr/3//NaszRp5se68ooONXQEAEP4iMnwc/vqErli83lLLnzJQ7Vo2t6kjAAAiR8SFj2c/OKAH/l5oXqdcEKv8+65SFGsWAAACIqLCx7hnCvT2rhLzev7Pu+u2vu1s7AgAgMgTMeHDMAxL8Ngw7SpddH6cjR0BABCZIiZ8OBwOLR93uQ5+9a1u69tODgdrFgAA7BAx4UOSMju1ktTK7jYAAIhovGc4AAAIKMIHAAAIKMIHAAAIKMIHAAAIKMIHAAAIKMIHAAAIKMIHAAAIKMIHAAAIKMIHAAAIKMIHAAAIKMIHAAAIKMIHAAAIKMIHAAAIqKD7VFvDMCRJHo/H5k4AAEBtff9z+/uf42cTdOGjvLxckpSSkmJzJwAAwF/l5eVKTEw862McRm0iSgBVV1fr6NGjio+Pl8PhsLsdW3g8HqWkpOjw4cNKSEiwu52QxBnWH2dYf5xh/XGG9ReoMzQMQ+Xl5UpOTlZU1Nmf1RF0k4+oqChddNFFdrcRFBISEvjLVk+cYf1xhvXHGdYfZ1h/gTjDc008vscTTgEAQEARPgAAQEARPoKQ0+nUnDlz5HQ67W4lZHGG9ccZ1h9nWH+cYf0F4xkG3RNOAQBAeGPyAQAAAorwAQAAAorwAQAAAorwAQAAAorwESRycnLkcDiUlZVl1gzD0Ny5c5WcnKzY2FgNHDhQhYWF9jUZZObOnSuHw2G5ud1u837Or3Y+//xz3XrrrWrZsqXi4uLUq1cvbd261byfczy79u3be/05dDgcmjhxoiTOrzbOnDmjWbNmKTU1VbGxserQoYPmzZun6upq8zGc47mVl5crKytL7dq1U2xsrDIyMlRQUGDeH1RnaMB2W7ZsMdq3b2/07NnTmDRpkllftGiRER8fb/ztb38zdu7cadx0001GUlKS4fF47Gs2iMyZM8fo1q2bcezYMfNWUlJi3s/5ndvXX39ttGvXzrj99tuNzZs3G0VFRcbatWuNffv2mY/hHM+upKTE8mcwLy/PkGSsX7/eMAzOrzYWLFhgtGzZ0nj99deNoqIi48UXXzTOO+884+GHHzYfwzme24033mh07drVyM/PN/bu3WvMmTPHSEhIMI4cOWIYRnCdIeHDZuXl5UZaWpqRl5dnZGZmmuGjurracLvdxqJFi8zHnjp1ykhMTDQef/xxm7oNLnPmzDEuueQSn/dxfrUzbdo0Y8CAATXezzn6b9KkSUbHjh2N6upqzq+WRo4caYwbN85SGzVqlHHrrbcahsGfw9o4ceKEER0dbbz++uuW+iWXXGLMnDkz6M6QtYvNJk6cqJEjR2rw4MGWelFRkYqLizV06FCz5nQ6lZmZqY0bNwa6zaC1d+9eJScnKzU1VTfffLP2798vifOrrVdffVV9+vTRDTfcoNatW6t379568sknzfs5R/9UVlZq5cqVGjdunBwOB+dXSwMGDNC6deu0Z88eSdKOHTu0YcMGjRgxQhJ/DmvjzJkzqqqqUrNmzSz12NhYbdiwIejOkPBho+eff17btm1TTk6O133FxcWSJJfLZam7XC7zvkiXnp6uZ599VmvWrNGTTz6p4uJiZWRk6KuvvuL8amn//v1atmyZ0tLStGbNGt111126++679eyzz0riz6G/XnnlFR0/fly33367JM6vtqZNm6ZbbrlFXbp0UZMmTdS7d29lZWXplltukcQ51kZ8fLz69eun+fPn6+jRo6qqqtLKlSu1efNmHTt2LOjOMOg+1TZSHD58WJMmTVJubq5XUv0hh8NhuTYMw6sWqYYPH27+d48ePdSvXz917NhRy5cvV9++fSVxfudSXV2tPn36KDs7W5LUu3dvFRYWatmyZfrVr35lPo5zrJ2nnnpKw4cPV3JysqXO+Z3dCy+8oJUrV2rVqlXq1q2btm/frqysLCUnJ2vs2LHm4zjHs1uxYoXGjRunNm3aKDo6WpdeeqlGjx6tbdu2mY8JljNk8mGTrVu3qqSkRJdddpliYmIUExOj/Px8PfLII4qJiTHT6Y8TaUlJiVdyxXeaN2+uHj16aO/evearXji/s0tKSlLXrl0ttYsvvliHDh2SJM7RDwcPHtTatWt15513mjXOr3amTJmi6dOn6+abb1aPHj1022236Z577jGnwpxj7XTs2FH5+fn65ptvdPjwYW3ZskWnT59Wampq0J0h4cMmgwYN0s6dO7V9+3bz1qdPH40ZM0bbt29Xhw4d5Ha7lZeXZ35NZWWl8vPzlZGRYWPnwauiokKffvqpkpKSzL9snN/Z9e/fX7t377bU9uzZo3bt2kkS5+iHp59+Wq1bt9bIkSPNGudXOydOnFBUlPXHUXR0tPlSW87RP82bN1dSUpJKS0u1Zs0aXXfddcF3hgF/iitq9MNXuxjGdy+LSkxMNF566SVj586dxi233MJLy37g3nvvNd555x1j//79xqZNm4xrrrnGiI+PNw4cOGAYBudXG1u2bDFiYmKMhQsXGnv37jX+8pe/GHFxccbKlSvNx3CO51ZVVWW0bdvWmDZtmtd9nN+5jR071mjTpo35UtuXXnrJuPDCC42pU6eaj+Ecz+2tt94yVq9ebezfv9/Izc01LrnkEuPyyy83KisrDcMIrjMkfASRH4eP6upqY86cOYbb7TacTqdx5ZVXGjt37rSvwSDz/WvUmzRpYiQnJxujRo0yCgsLzfs5v9p57bXXjO7duxtOp9Po0qWL8cQTT1ju5xzPbc2aNYYkY/fu3V73cX7n5vF4jEmTJhlt27Y1mjVrZnTo0MGYOXOmUVFRYT6Gczy3F154wejQoYPRtGlTw+12GxMnTjSOHz9u3h9MZ+gwDMMI/LwFAABEKp7zAQAAAorwAQAAAorwAQAAAorwAQAAAorwAQAAAorwAQAAAorwAQAAAorwAQAAAorwAQAAAorwAQAAAorwAQAAAorwAQAAAur/A5ECojApnrn6AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x3 = x2.drop(['Agriculture'], axis = 1)\n", "fit3 = LinearRegression().fit(x3, y)\n", "yhat3 = fit3.predict(x3)\n", "plt.plot(yhat, yhat3);\n" ] } ], "metadata": { "colab": { "authorship_tag": "ABX9TyPD6YfE7eh7Lu8TLxXjNkFR", "include_colab_link": true, "name": "regression_examples", "provenance": [] }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.13" } }, "nbformat": 4, "nbformat_minor": 4 }