Linear models: a classic example¶
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
dat = pd.read_csv("https://raw.githubusercontent.com/bcaffo/ds4bme_intro/master/data/swiss.csv")
dat.head()
Loading...
y = dat.Fertility
x = dat.drop(['Region', 'Fertility'], axis=1)
fit = LinearRegression().fit(x, y)
yhat = fit.predict(x)
[fit.intercept_, fit.coef_]
[66.9151816789687,
array([-0.17211397, -0.25800824, -0.87094006, 0.10411533, 1.07704814])]x2 = x
x2['Test'] = x2.Agriculture + x2.Examination
fit2 = LinearRegression().fit(x2, y)
yhat2 = fit2.predict(x2)plt.plot(yhat, yhat2);
x3 = x2.drop(['Agriculture'], axis = 1)
fit3 = LinearRegression().fit(x3, y)
yhat3 = fit3.predict(x3)
plt.plot(yhat, yhat3);
